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In the absence of an external frame of reference—i.e., in background independent the-
ories such as general relativity—physical degrees of freedom must describe relations
between systems. Using a simple model, we investigate how such a relational quantum
theory naturally arises by promoting reference systems to the status of dynamical enti-
ties. Our goal is twofold. First, we demonstrate using elementary quantum theory how
any quantum mechanical experiment admits a purely relational description at a funda-
mental. Second, we describe how the original “non-relational” theory approximately
emerges from the fully relational theory when reference systems become semi-classical.
Our technique is motivated by a Bayesian approach to quantum mechanics, and relies
on the noiseless subsystem method of quantum information science used to protect
quantum states against undesired noise. The relational theory naturally predicts a fun-
damental decoherence mechanism, so an arrow of time emerges from a time-symmetric
theory. Moreover, our model circumvents the problem of the “collapse of the wave
packet” as the probability interpretation is only ever applied to diagonal density oper-
ators. Finally, the physical states of the relational theory can be described in terms of
“spin networks” introduced by Penrose as a combinatorial description of geometry, and
widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up
approach (starting from the semiclassical limit to derive the fully relational quantum
theory) may offer interesting insights on the low energy limit of quantum gravity.
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1. INTRODUCTION

To combine the two main physical theories of the twentieth century—
quantum mechanics and general relativity—it is important to clearly identify
the chief insights they offer on the physical world. Quantum mechanics estab-
lishes a mathematical apparatus—Hilbert space, canonical quantization, etc.,—
that sets a general framework to describe physical systems. Here, we will assume
that this general framework is essentially correct. The main lesson retained from

1 School of Physical Sciences, The University of Queensland, QLD 4072, Australia; e-mail:
dpoulin@iqc.ca.

1229
0020-7748/06/0700-1229/0 C© 2006 Springer Science+Business Media, Inc.



1230 Poulin

general relativity is that physical theories should not be formulated in terms of
a background reference frame, but rather should be relational; a point of view
emphasized by Rovelli (1996, 2004) among other. Starting from plain elementary
quantum mechanics, we investigate consequences of background independence.

More precisely, we will argue that an orthodox (non-relational) physical
description can be made purely relational by following four simple guidelines.
(Here and throughout this manuscript, we call “orthodox” the description of a
system found in any elementary textbook on quantum mechanics, where time and
space are treated as absolute external parameters.) These guidelines are:

(1) Treat everything quantum mechanically.
(2) Use Hamiltonians with appropriate symmetries.
(3) Introduce equivalence classes between quantum states related by an ele-

ment of the symmetry group.
(4) Interpret diagonal density operators as probability distributions.

In the appropriate semiclassical limits, the relational theory will be equivalent to
the orthodox quantum description, in the sense that it leads to the same physical
predictions. However, away from these limiting regimes, the relational theory also
predicts new phenomenon, such as a fundamental decoherence process (Gambini
et al., 2004).

Our first guideline suggests that we should not resort to semiclassical approx-
imations in the description of a physical system. Such approximations are often
responsible for breaking the symmetries of the system, and in effect, introduce a
background reference frame. For example, treating an external magnetic field as
classical provides a natural axis to quantize angular momentum. Note that quantum
theory is not required to arrive at a relational description: there are perfectly valid
relational classical theories. In a classical relational theory, it is often possible to
choose an arbitrarily system as a reference frame and recover a nonrelational the-
ory, e.g., by working in the rest frame of a specific particle. In a quantum settings
however, switching from the relational to the nonrelational description will always
require some level of approximation since reference frames defined with respect
to quantum systems are subject to quantum fluctuations (Aharonov and Kaufherr,
1984; Rovelli, 1991; Toller, 1997; Mazzucchi, 2000). These quantum effects can
be made arbitrarily small by increasing the mass of the reference system. However,
in practical situations, reference systems have finite masses. Moreover, increas-
ing their masses will induce gravitational distortions to the measured quantities
(Wigner, 1957; Giovannetti et al., 2004), so it is essential to keep the masses finite.
Here, we will neglect gravitational corrections and focus on quantum mechanical
effects.

The second guideline follows as a corollary of the first. Once every physi-
cal system—including reference systems—are treated quantum mechanical, the
fundamental Hamiltonians will have the appropriate symmetries for the obvious
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reason that it is not possible to write down a symmetry breaking term without use
of external coordinates.

The third guideline is used to get rid of unphysical information in the descrip-
tion of the system. States that are related by a transformation that belongs to the
symmetry group of the system should be regarded as physically equivalent. This
point of view is quite natural if one adopts a Bayesian interpretation of quantum
states (Caves et al., 2002; Fuchs, 2002). Following a Bayesian prescription, the
lack of an external reference frame leads to group averaging of the quantum states.
The effect of this group average will be to randomize the unphysical degrees of
freedoms—those defined with respect to an external reference frame—while leav-
ing the relational (hence physical) ones unchanged. At this stage, the unphysical
degrees of freedom can be removed from the description as they carry no informa-
tion. This procedure is inspired by the noiseless subsystems method (Knill et al.,
2000; Zanardi, 2001; Kempe et al., 2001) used to protect the state of “virtual”
quantum systems in quantum information science. In this language, the physical
degrees of freedom form noiseless subsystems of a noise algebra, where the noise
operators are elements of the symmetry group of the system. At a formal level,
the third guideline says that we must quotient the state space of physical systems
by their symmetry group. We note that the Bayesian prescription differs from the
“coherent” group average commonly encountered in quantum gravity (see Marolf,
2000), leading to distinct physical descriptions.

Finally, guideline 4 gives the standard interpretation to quantum states, but
circumvents the problematic collapse of the wave packet. All four guidelines will
get clarified as we apply them to a simple example in the next section.

The outline of the paper is as follows. In the next section, we will present the
simplest textbook quantum mechanical system: a spin- 1

2 particle immersed in a
uniform constant magnetic field. Despite its simplicity, the orthodox description
of this system violates all four guidelines, so it provides a good starting point to
illustrate our procedure. In the following Sections (2.1, 2.2, and 2.3), we grad-
ually apply our procedure to this system and arrive at a relational theory that is
equivalent to the original theory in the appropriate “macroscopic” limit. Away
from these limits however the relational theory predicts new phenomenon such as
a fundamental decoherence mechanism, that can clearly be seen in our numerical
analysis. In Section 3, we describe the general picture that derives from our four
guideline. The main ingredients of the construction are the noiseless subsystems of
quantum information science that will be briefly described. Section 4.1 discusses
the fundamental decoherence mechanism that arises from the relational theory.
In short, decoherence will occur whenever clocks are of finite size and therefore
subject to quantum fluctuations (Gambini et al., 2004), leading to an arrow of
time in a time-independent theory. Section 4.2 establishes a connection between
the basis states of the relational theory and “spin networks” introduced by Penrose
(1971) as a combinatorial description of geometry and widely studied in the loop
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formulation of quantum gravity (Rovelli and Smolin, 1995; Baez, 1995) (see also
Major, 1999). It is our hope that the slight distinction between how spin networks
arise in our “semiclassically inspired” model and how they are used in loop quan-
tum gravity will yield some new insights on the low energy regime of quantum
gravity. In Section 4.3, we speculate about possible extensions of the program and
relate it to the concept of superselection rule and spontaneous symmetry breaking.
Finally, we conclude with a summary in Section 5.

2. AN EXAMPLE

We begin by illustrating our program with the simplest quantum mechanical
system: the system (S), a spin- 1

2 particle, is interacting with a uniform magnetic
field �B. In this toy Universe, the spacetime manifold has the topology S2 × S1;
there are only orientations in 3-space (hence the 2-sphere) and time (which we
assume takes a finite range with periodic boundary conditions, and hence has the
topology of a circle). Accordingly, the fundamental symmetries are SO(3) and
U (1). The orthodox description of this system goes as follows. Without loss of
generality, we assume that �B is along the x axis, so the system’s Hamiltonian
is HS = −BσS

x where all physical constants are absorbed in B. The system’s
initial conditions are specified by the state |ψ(0)〉S = α|↑〉S + β|↓〉S , where the
quantization axis is arbitrarily chosen to be along the z direction (this will be the
case throughout this manuscript, unless specified otherwise). At time t , the state
of the system is

|ψ(t)〉S = α(t)|↑〉S + β(t)|↓〉S , (1a)

α(t) = α cos(Bt/2) + iβ sin(Bt/2) (1b)

β(t) = iα sin(Bt/2) + β cos(Bt/2). (1c)

If we wish to measure the value of the spin of the system at time τ , say along
the z-axis, we must introduce a measurement apparatus A that couples to S. The
time-dependent interaction Hamiltonian

HSA(t) = −gδ(t − τ )σS
z ⊗ σA

y (2)

is a good choice of “measurement” coupling. The coupling constant is set to
g = 2π . Given the initial state of the apparatus (|↑〉A + |↓〉A)/

√
2, the joint state

of S − A at time t = τ+ immediately after the interaction is

|�(τ+)〉SA = α(τ )|↑〉S ⊗ |↑〉A + β(τ )|↓〉S ⊗ |↓〉A.

This pre-measurement phase establishes correlations between S and A. The next
step of the measurement process is the collapse of the wave function, which asserts
that the measurement apparatus, being a “classical” object, cannot be in a quantum
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superposition, so it rapidly collapses into either the up or down state, each with
probabilities given by amplitude squared. In certain circumstances, this step can
be given an operational justification (Zurek, 2003; Ollivier et al., 2004; Poulin,
2004). At this stage, the pair S − A is described by the mixed state

ρSA = |α(τ )|2|↑〉〈↑|S ⊗ |↑〉〈↑|A + |β(τ )|2|↓〉〈↓|S ⊗ |↓〉〈↓|A.

The interpretation of this state is that both S and A are either in the up state with
probability |α(τ )|2, or both in a down state with probability |β(τ )|2, given by (1),
and this completes the measurement process.

This description is obviously not background independent as it makes ex-
plicit use of an external coordinate system. In the case of the external field, this
dependence is explicit: �B ∝ x̂, where x̂ makes reference to a coordinate system.
The dependence of the measurement apparatus on an external reference frame is
twofold. First, the coupling Hamiltonian (2) used to establish correlation between
system and apparatus is neither rotationally nor time-translationally invariant,
thus conflicting with guideline 2. Moreover, the collapse phase requires the spec-
ification of a preferred observable: classical objects cannot be in superposition
involving different values of this preferred observable. We say that the preferred
observable is superselected. In the above example, the preferred observable was the
angular momentum along the z-axis, once again making reference to an external
coordinate system.

We will refer to the example presented in this section as the “toy model.” In
the next subsections, we will apply our guidelines to the toy model and eliminate
the need for an external reference frame, demonstrating how one naturally arrives
at a purely relational theory. Before doing so, we must pause to establish some
notation. In what follows, we use several particle with different angular momentum
(or spin) to describe the toy model. To avoid confusion, we adopt the following
notation. Each particle is given a name that is represented by a calligraphic capital
letter, e.g., A. Operators, states, and Hilbert space referring to this particle will
have the associated letter as a superscript. The quantum number associated to the
total angular momentum of the particle is represented by the same capital letter in
roman fonts, while the quantum number for the z component will be labeled by the
lower case letter. For particle A, this gives (JA)2|A, a〉A = A(A + 1)|A, a〉A and
JA

z |A, a〉A = a|A, a〉A, with |A, a〉A ∈ HA = C
2A+1. Exception will be made

for spin- 1
2 particles where the up and down arrows are used. Finally, we denote

B(H) the set of bounded linear operators acting on H.

2.1. Measurement

Our goal is now to demonstrate how our guidelines naturally lead to a back-
ground independent relational theory that is equivalent to the orthodox description
in the appropriate limits. Hence, in this section and the following, we will often
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be interested in various limiting regimes of the relational theory. These limits are
not constitutive to the theory: their sole purpose is to demonstrate compatibility
with known regimes. Of course, the new and interesting physics will arise when
the relational theory is analyzed away from these limits.

Let us first assume that there is no system Hamiltonian, so the system’s state
is α|↑〉S + β|↓〉S at all times. To perform a spin measurement in the absence of an
external reference frame, we need a gyroscopeG. Following guideline 1, we should
treat this gyroscope quantum mechanically. A good choice consists of a spin-G
particle2 with large value of G, prepared in a state of maximal angular momentum
along the z direction, i.e., in the quantum state |G, g = G〉G , which we abbreviate
|G,G〉G . States of maximum angular momentum along a certain axis, also called
SU (2) coherent states, are appreciated for their semiclassical properties, and as
such, they will be used extensively here to recover the nonrelational limit. Note
that the description of a gyroscope relies on an external coordinate system, but we
will soon get rid of it.

At any given time, the joint state of the system and the gyroscope is thus

|�〉SG = (α|↑〉S + β|↓〉S ) ⊗ |G,G〉G . (3)

As noted above, this state describes unphysical degrees of freedom as it is defined
relative to an nonexisting coordinate system. To eliminate this pathology, we follow
guideline 3 and introduce equivalence classes between states in the composite
Hilbert space HSG = C

2 ⊗ C
2G+1. For this, we represent the quantum state of

(3) by the density operator ρSG = |�〉〈�|SG ∈ B(HSG). The equivalence classes
are obtained by applying the trace preserving completely positive (TPCP) map
ESG : B(HS ⊗ HG) → B(HS ⊗ HG) defined by the action

ESG(ρ) =
∫

SO(3)
RSG(
)ρRSG(
)†d
, (4)

where RSG = RS ⊗ RG is the unitary representation of the rotation group on the
pair S − G, and d
 is the invariant Haar measure on SO(3). The resulting state
ρ ′SG = ESG(ρSG) is thus rotationally invariant. The map E generalizes to any
number of particles in an obvious manner.

The representation RSG is generated by the total angular momentum opera-
tor �JSG = �σS + �JG , where �σS = (σS

x , σS
y , σS

z ) and �JG = (JG
x , JG

y , JG
z ) are the

system’s and gyroscope’s angular momentum operators respectively. The repre-
sentation therefore commutes with the operators (JSG)2 = �JSG · �JSG , (σS )2 and
(JG)2. Hence, to study the effect of ESG , it is useful to express |�〉SG in terms of

2 Note that the gyroscope can be a composite particle. For example, the gyroscope could be a ferro-
magnet composed of 1023 spin- 1

2 particles all roughly aligned in the same direction, which for our
purposes behaves as a single particle with large spin.
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the total angular momentum:

|�〉SG = α|G + 1
2 ,G + 1

2 ; 1
2 ; G〉 + β√

2G+1
|G + 1

2 ,G − 1
2 ; 1

2 ; G〉

+ β
√

2G√
2G + 1

|G − 1
2 ,G − 1

2 ; 1
2 ; G〉.

Above, we use standard angular momentum notation: |j,m; j1; j2〉 is a simulta-
neous eigenstate of (JSG)2, JSG

z , (σS )2, and (JG)2 with eigenvalues j (j + 1),
m, j1(j1 + 1), and j2(j2 + 1) respectively (see e.g., Sakurai, 1994). As JSG

z is
the only operator defined with respect to the external reference frame, the effect
of E on this state can be readily anticipated: it randomizes the value of m while
leaving the other quantum numbers unaffected (Bartlett et al., 2004). Indeed, the
expression we get is

ESG(ρSG) =
[
|α|2 + |β|2

2G + 1

]
|G + 1

2 ; 1
2 ; G〉〈G + 1

2 ; 1
2 ; G| ⊗

112G+2

2G + 2
+ 2G|β|2

2G + G
|G − 1

2 ; 1
2 ; G〉〈G − 1

2 ; 1
2 ; G| ⊗ 112G

2G
,

where the identity operators 1l act on the JSG
z sectors. Thus, the unphysical degree

of freedom associated with J tot
z is now in a maximally mixed state and can be

removed from the physical description to arrive at

ρSG
physical =

[
|α|2 + |β|2

2G + 1

]
|G + 1

2 ; 1
2 ; G〉〈G + 1

2 ; 1
2 ; G|

+ 2G|β|2
2G + 1

|G − 1
2 ; 1

2 ; G〉〈G − 1
2 ; 1

2 ; G|. (5)

Guideline 4 gives the desired interpretation to this state: a spin-G and a spin- 1
2 par-

ticle (here the gyroscope and the system respectively) are either parallel, yielding
a total angular momentum G + 1

2 , or antiparallel, yielding G − 1
2 . The probabil-

ities associated to these two alternatives are P (parallel) = |α|2 + |β|2/(2G + 1)
and P (antiparallel) = 2G|β|2/(2G + 1). When the gyroscope is of a macroscopic
size, we recover the familiar probabilities |α|2 and |β|2. Note that these probabili-
ties are the diagonal entries of a diagonal density matrix: no collapse was required
to recover the probability rule.

The general picture illustrated here for a spin- 1
2 particle holds for an ar-

bitrary spin. This follows from the fact that the Clebsch–Gordan coefficients
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C(S, s; G, g; J, j ) = (〈S, s| ⊗ 〈G, g|)|J,m; S,G〉 satisfy3

lim
G→∞

∣∣C(S, s; G,G; G + s + �,G + s)
∣∣2 =

{
1 if � = 0
0 otherwise.

(6)

Thus, given a spin-S system in state |ψ〉S = ∑
s αs |S, s〉 and a gyroscope in state

|G,G〉G , we can write the combined state in terms of the total angular momentum
as

|�〉SG =
∑
s,J

αsC(S, s; G,G; J,G + s)|J,G + s; S; G〉.

When the gyroscope reaches macroscopic scales, this state approaches
∑

s αs |G +
s,G + s; S; G〉 by virtue of (6). Guideline 3 thus implies

ρSG
physical ≈

∑
s

|αs |2|G + s; S; G〉〈G + s; S; G|. (7)

This state has the desired interpretation: the angle θ between the gyroscope and
the system satisfies cos θ = s/S with probability |αs |2.

2.2. Dynamics

By promoting the reference frame to the status of a dynamical entity, a
gyroscope, we have demonstrated how the quantum probability rule is recovered
in a macroscopic limit of a background independent theory (see also e.g., Aharonov
and Kaufherr, 1984; Rovelli, 1991; Toller,1997; Mazzucchi, 2000). The next step is
to introduce nontrivial dynamics. The only symmetric single-particle Hamiltonian
is trivial, so following guideline 2, dynamics must be caused by interaction. In the
toy model, this was achieved by applying an external magnetic field �B that made
the spin precess. To model this field, all we need is a big magnet M. Following
guideline 1, this magnet must be quantum mechanical, so we represent it with a
particle of maximal spin along the x axis:

|M,M〉Mx = 1

2M

M∑
m=−M

(
2M

M + m

)1/2

|M,m〉M.

We must couple this magnet to the system with a symmetric Hamiltonian,
so it has to be a scalar function of �JM · �σS . We choose the Heisenberg coupling
HSM = −2λ �JM · �σS . Given the system’s initial state α|↑〉 + β|↓〉, we can easily

3 We have verified this limit numerically up to accuracy roughly 1% for G of a few hundreds, but have
not been able to derive it analytically.
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solve the equation of motion and get

|�(t)〉SM = |M,M〉Mx ⊗ |ψ(t)〉S + C(t)

[
1√
2M

|M,M〉Mx ⊗ |↓〉S

+ |M,M − 1〉Mx ⊗ |↑〉S
]

(8)

where |ψ(t)〉S is the solution to the toy model given by (1) with B = λ(2M + 1),
and the function C(t) is equal to i

√
M2(α − β) sin(Bt/2)/(2M + 1). We see

that C(t) ∼ 1/
√

M , so when the magnet reaches macroscopic sizes, we obtain the
same formal solution as we did with the toy model. Note however that the physical
description is not yet rotationally invariant as states are expressed with respect to
an external z quantization axis.

Once again, what we have illustrated here with a spin- 1
2 system is true in

general and follows from (6) and another similar identity

lim
M→∞

∣∣C(S, s + �; M,M − �; M + s,M + s)
∣∣2 =

{
1 if � = 0
0 otherwise.

(9)

Taking the limit M → ∞ while keeping 2λM = B will result in the state

|�(t)〉SM ≈
∑

s

αse
iBst |S, s〉Sx |M,M〉Mx (10)

as expected for a spin-S particle immersed in a magnetic field along the
x-axis.

To eliminate the unphysical reference frame from the above discussion, we
need to reintroduce the gyroscope and apply guideline 3. At this stage, only
relational degrees of freedom between S, M, and G will remain. One can easily
recover the nonrelational result by letting both the gyroscope and the magnet
reach macroscopic sizes. After a few algebraic manipulations and keeping only
the nonvanishing terms, we arrive at

ρSMG
physical ≈ 1

22M

M−1∑
n=−M

(
2M

M + n

)
|�n(t)〉〈�n(t)|SMG (11)

where we have defined

|�n(t)〉SMG = α(t)|G + 1
2 + n; G + 1

2 〉SMG

+β(t)

√
M − n

M + n + 1
|G + 1

2 + n; G − 1
2 〉SMG (12)

where α and β are defined in the toy model, cf. (1). In the above equation, the quan-
tum numbers refer to the eigenvalues of the total angular momentum, and the joint
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angular momentum of the system and the gyroscope, i.e., (JSMG)2|a; b〉SMG =
a(a + 1)|a; b〉SMG and (JSG)2|a; b〉SMG = b(b + 1)|a; b〉SMG . These quantum
numbers are purely relational. The quantum numbers associated to (σS )2, (JM)2,
and (JG)2 still have values 1

2 , M, and G respectively, but were omitted to avoid
cumbersome notation. All quantum numbers are at this stage associated to rota-
tionally invariant observables.

Now, observe that the binomial coefficient appearing in (11) is sharply
peaked around the value n = 0, with a width �n ∼ √

M . In this range, the term
appearing under the square-root in (12) is one, plus fluctuations of order 1/

√
M .

Following guideline 2, we conclude that with probability approaching unity as M

goes to infinity, the joint state of the system, magnet, and gyroscope is |�n(t)〉 ≈
α(t)|G + 1

2 + n; G + 1
2 〉SMG + β(t)|G + 1

2 + n; G − 1
2 〉SMG for some random

n ∈ [−√
M,

√
M].

The reduced state of the system and the gyroscope—the state obtained by
tracing out the relational degree of freedom involving the magnet—is given by

ρSG
physical ≈ |α(t)|2|G + 1

2 ; G; 1
2 〉〈G + 1

2 ; G; 1
2 |

+|β(t)|2|G − 1
2 ; G; 1

2 〉〈G − 1
2 ; G; 1

2 |, (13)

with interpretation that at time t , the system and gyroscope’s spin are either parallel
or antiparallel with respective probabilities |α(t)|2 and |β(t)|2. There are two ways
to arrive at this result. One can start from (11), reverse the Clebsch–Gordan
transformation and trace out the magnet. A more direct route is to use the fact that
the map associated to tracing out a system and the map E representing a group
average as in (4) commute when the group acts unitarily on the system being
traced out, i.e.,

T rB

∫
UA(
) ⊗ UB(
)ρABUA(
)† ⊗ UB(
)†d


=
∫

UA(
)T rB{ρAB}UA(
)†d
.

Thus, we can start directly from (8) and trace out the magnet. Up to corrections of
order 1/

√
M , the joint state of S and G will be given by (3) with time dependent

amplitudes, so the results of Section 2.1 apply directly, yielding (13).

2.3. Time

So far, we have been concerned with the rotational symmetry of physical
descriptions. The remaining symmetry is time translation. The explicit time pa-
rameter t appearing in the above equations is defined with respect to an unphysical
reference frame, so must also be eliminated. But before getting rid of time, it is
practical to build a clock! A clock C is just a big rotating needle, so again it
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will be represented quantum mechanically by a spin-C particle initialized in state
|C,C〉C . By letting this clock interact with a magnet N (we use the letter N for
this magnet as M is already used), it will start rotating just like a normal clock
does. Of course, this clock has periodic motion—with period T C = π/λN—so it
can only keep tract of time in a fixed interval [0, T C].4

In the real world, this problem is fixed by hooking up clocks to calendars,
which break the periodicity. Here, we will circumvent this problem by assuming
that the spacetime manifold (or sub-manifold of interest) has t ∈ [0, T C] with
periodic boundary conditions, so our clock is well adapted. Here, periodic bound-
ary conditions imply that as both magnets reach macroscopic size, their ratio
� = M/N is an integer, which is just saying that T C is an integer multiple of the
system’s precession period.

We will eliminate time using guideline 3, exactly as we did for the rotational
reference frame: we perform a group average and remove the unphysical degrees
of freedom. Given a time translation operator U (t), we define the TPCP map T
by the action

T (ρ) = 1

T C

∫ T C

0
U (t)ρU (t)†dt. (14)

The combined effect of E (cf. (4)) and T is to randomize all nonphysical degrees of
freedom, while keeping relational ones unchanged. Unphysical degrees of freedom
can then be removed from the description.

To apply this procedure to our model, we use the the same tricks as above.
Using (10), we obtain an expression of the time dependent state of the system,
clock and two magnets. We can then trace out both magnets as both maps T and
E act unitarily on them (in the case of T , this is only true in the asymptotic limit).
This yields the state

ρSC(t) ≈
∑

s,s ′=±1/2

C∑
c,c′=−C

asa
∗
s ′

1

22C

√(
2C

C + c

)(
2C

C + c′

)
eit{B(s−s ′)+B ′(c−c′)}

× |s〉〈s ′|Sx ⊗ |C, c〉〈C, c′|Cx (15)

where subscripts x indicate that the second quantum number refers to Jx , and
a±1/2 = (α ± β)/

√
2. Under the periodic boundary conditions of our model, the

map T will turn the exponential into a Kronecker delta δc+�s,c′+�s ′ , where � is
define above as the ratio of the two magnetic fields. This eliminates the time t

from our physical description. We then introduce the gyroscope into the picture,

4 In fact, since the gyroscope only allows us to read the clock along a single axis, the observable clock’s
period is really T C/2. More sophisticated clocks could be built, but we will ignore this problem by
choosing � to be an even number for simplicity.
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and express the state in terms of the operator σS
z , (J CG)2 and J CG

z . Using (6), we
obtain

ρSCG ≈
∑

c

∑
s,s ′,r,r ′

asa
∗
s ′

2

1

22C

√(
2C

C + c + �s

)(
2C

C + c + �s ′

)

×(−1)(r−1/2)(s−1/2)+(r ′−1/2)(s ′−1/2)|r〉〈r ′|S

⊗
∑
m,m′

dC
m,c+�sd

C
m′,c+�s ′ |G + m,G + m〉〈G + m′,G + m′|CG

where again, the quantum numbers for (J C)2 and (JG)2 are constant, so were
omitted. The coefficients d

j

m,m′ = d
j

m,m′ (π/2) are the Wigner rotation matrices
(see e.g., (Sakurai, 1994)) that allow us to express Jx eigenstates in terms of
Jz eigenstates. We can now apply the map ESCG to this state, and trace out the
unphysical degrees of freedom to obtain

ρSCG
physical ≈

∑
c

∑
s,s ′,r,r ′

asa
∗
s ′

2

1

22C

√(
2C

C + c + �s

)(
2C

C + c + �s ′

)
(16)

×(−1)(r−1/2)(s−1/2)+(r ′−1/2)(s ′−1/2)

×
∑

u

dC
u−r,c+�sd

C
u−r ′,c+�s ′ |G + u; G + u − r〉〈G + u; G + u − r ′|SCG

where the two quantum numbers a and b appearing in the states |a; b〉 refer to the
relational observables (J CG)2 and (JSCG)2 respectively. This is the final result:
it is the fully relational state obtained from applying the maps E and T and
traced out both magnets from the initial non-relational state. We will now consider
measurements statistics predicted by this state.

To “read the time,” one must measure the clock’s needle orientation relative
to the gyroscope; in other words, measure (J CG)2. This will fix the value of
G + u, and hence of u. As before, this should be given the interpretation that
the clock’s needle is at an angle θ satisfying cos θ = u/C. Just as with regular
clocks, the angle of the needle θ is directly interpreted as time. We can evaluate
the probability distribution P (u) numerically from (16); we observe that the
probability distribution for various values of u is roughly given by 1/π

√
C2 + u2,

see Fig. 1(a). This will lead to a flat distribution for the values of θ = cos−1(u/C) as
expected. The interpretation of this result is that when reading the clock, one gets a
random answer θ taking discrete values in [0, π ] with roughly equal probabilities.

Given a value of u, we can obtain the conditional state of the system, clock,
and gyroscope by applying the von Neumann state update rule to ρSCG

physical(von
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Fig. 1. Numerical results obtained from (17). The “free parameters” α and β, reflecting the system’s
initial state in the nonrelational theory, were fixed to α = 1 and β = 0. The ratio � = M/N of the
magnet’s size is fixed to 10. a) Probability of the outcome G + u for the measurement of (JCG )2 as a
function of u, for a clock of size C = 20. The dash line is the function 1/π

√
C2 − u2 corresponding to

a flat distribution over the value of θ . b) Probability of the measurement outcome of (JSCG )2 indicating
an antiparallel orientation of the system and gyroscope’s spins as a function of clock reading θ , for
various clock sizes C = 20, 40, 100, and 400. As the size of the clock increases, the result approaches
the nonrelational prediction P (r = +1/2|θ ) = |β(t)|2 given by (2). and illustrated by the dash line
on the figure. The deterioration of the result as θ increases is due to a fundamental decoherence
mechanism that occurs whenever clocks are of finite size (Gambini et al., 2004).
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Neumann, 1955):

ρSCG
physical

u→ρ
SCG|u
physical = Puρ

SCG
physicalPu

P (u)
(17)

where Pu is the projector onto the subspace corresponding to the measurement
outcome u. Since here the state ρSCG

physical commutes with the various Pu, the state
update rule is formally equivalent a classical Bayesian update, so it is compatible
with guideline 4.

For a fixed value of clock read θ , we can ask what is the orientation of the
system relative to the gyroscope and clock, or in other words, measure (JSCG)2.
(Note that measuring the orientation of the system relative to G or C + G gives the
same result when G is of macroscopic size.) This fixes the value of G + u + s, and
hence of s. Starting from (16), we have numerically evaluated the probability of
the outcome s = −1/2—the system and gyroscope’s spin is antiparallel—given a
value of θ for various gyroscope sizes; results are shown on Fig. 1. As expected,
when the size of the clock is very large (e.g., C = 400) the results are very close to
the orthodox predictions. For small clocks however, results agree for small values
of θ and rapidly deteriorate. This is an interesting effect that we will discuss in
Section 4.1. This completes our “translation” of the orthodox description of a
system immersed into a magnetic field into a purely relational description.

3. SYMMETRIES AND NOISELESS SUBSYSTEMS

The techniques illustrated in the previous section were inspired by the noise-
less subsystem method used to protect quantum states against undesired noise in
quantum information science. The derivation we applied to the symmetry group
SO(3) × U (1) representing rotation and time translation in the previous section
can be applied straightforwardly to any symmetry group acting on a finite dimen-
sional Hilbert space. The goal of this section is to present the general picture that
naturally emerges from the four guidelines stated in Section 1.

Let us begin with a bit of notation. We consider a collection of quantum
systems S1, S2, . . . representing for example the system of interest, a clock,
a gyroscope, etc., To avoid unnecessary mathematical complications, we will
assume that each of these systems is associated a finite dimensional Hilbert space
HSj , with dim(HSj ) = dj . In a nonrelational theory, physical states are given by
rays in the kinematical Hilbert space H = ⊗

j HSj . These states can be expressed
in terms of arbitrary basis {|e1〉Sj , |e2〉Sj , . . . , |edj 〉Sj } which serve as a reference
frame.
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3.1. Noiseless Subsystems

A TPCP map E : B(H) → B(H) can be described in an operator-sum rep-
resentation (Kraus, 1983) as E(ρ) = ∑

a EaρE
†
a , with

∑
a E

†
aEa = 1l to ensure

trace preservation. The algebra A generated by the set {Ea,E
†
a } is a †-algebra,

called the interaction algebra, and as such it is unitarily equivalent to a direct sum
of (possibly “ampliated”) full matrix algebras: A ∼= ⊕

J MmJ
⊗ 1lnJ

, where Mm

is a m-dimensional full matrix algebra, and 1ln is the n × n identity operator. This
structure induces a natural decomposition of the Hilbert space

H =
⊕

J

HJ ⊗ KJ ,

where the “noisy subsystems” HJ have dimension mJ and the “noiseless subsys-
tems” KJ have dimension nJ .

If E is a unital quantum operation, by which we mean that the maximally
mixed state 1l remains unaffected by E (i.e., E(1l) = 1l), then the fundamental
noiseless subsystem method (Knill et al., 2000; Zanardi, 2001; Kempe et al.,
2001) of quantum error correction may be applied. This method makes use of the
structure of the noise commutant,

A′ = {
ρ ∈ B(H) : Eρ = ρE ∀E ∈ {Ea,E

†
a }

}
, (18)

to encode states that are immune to the errors of E . Note that with the structure ofA
given above, the noise commutant is unitarily equivalent to A′ ∼= ⊕J 1lmJ

⊗ MnJ
.

Moreover, for unital E , the noise commutant coincides with the fixed point set for
E (Busch and Singh, 1998; Lindblad, 1999); i.e.,

A′ = Fix(E) = {ρ ∈ B(H) : E(ρ) = ρ}.
This means that a quantum state ρ will not be affected by the noise operation E
if and only if it is in A′. We may thus regard the spaces KJ as the Hilbert spaces
associated to virtual particles that are not affected by the map E . The noiseless
subsystem technique has recently been generalized to include interaction algebras
that are not †-closed associated with nonunital maps (Kribs et al., 2005; Nielsen
and Poulin, 2005), but the unital case will be sufficient for our purposes.

3.2. Space Symmetries

We begin by considering “space” symmetries, i.e., those that are not time
translation (we assume for a moment a nonrelativistic setting). The fundamen-
tal symmetries of the system are represented by a group G which in general
could be the Galilean group, the Weyl-Heisenberg group, etc. In the example
of Section 2, this group was SO(3). The discussion also straight forwardly ex-
tends to internal symmetries. The group G acts unitarily on the state space of
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each system: the effect of g ∈ G on the state |ψ〉S of system S is represented
by some unitary matrix US (g). The kinematical state can be expressed in an
arbitrary basis {|e1〉S , |e2〉S , . . . , |ed〉S} of the system. Given a group element
g ∈ G, we can construct a new set of basis states {|f 1〉S , |f 2〉S , . . . , |f d〉S} where
|f k〉S = US (g)|ek〉S for all k.

From a quantum Bayesian point of view (Caves, etal., 2002; Fuchs, 2002),
the nonrelational states should be thought of as states given a preferred basis or
equivalently, given a preferred reference frame R. Thus, we should write |ψ〉S1S2...

|R
for states expressed with respect to the reference frame R. Following the discussion
of the previous paragraph, the same physical state can be expressed in terms of an
other reference frame R′ as |ψ〉S1S2...

|R′ = US1 (g) ⊗ US2 (g) ⊗ . . . |ψ〉S1S2...
|R , where

g if the group element relating the basis associated to R and R′. But background
independence tells us that R is unphysical. Following the Bayesian prescription,
in the absence of an external reference frame, the state assigned to the collection of
system should be a statistical mixture of the |ψ〉S1S2...

|R averaged over all reference
frames. This leads to

ρ
S1S2...
physical = ES1S2...(|ψ〉〈ψ |S1S2...

|R ) (19)

=
∫
G

US1 (g) ⊗ US2 (g) ⊗ . . . |ψ〉〈ψ |S1S2...
|R US1 (g)† ⊗ US2 (g)† ⊗ . . . dg

(20)

where dg is the group invariant measure satisfying
∫
G dg = 1. This choice of

“flat” distribution reflects our complete ignorance of a preferred reference frame
R, so it is well justified in a Bayesian approach. This defines a TPCP map ES1S2...

analogue to the one defined at (4) in our example of Section 2. This averaging
procedure is the exact analog of the rule P (a) = ∑

b P (a|b)P (b) of classical
probability theory, relating the probability of event a to the conditional probability
of a given a value of b and the prior probability of b.

This Bayesian inspired group average differs from the “coherent” group av-
erage

∫
G US1 (g) ⊗ US2 (g) ⊗ . . . |ψ〉S1S2...dg commonly encountered in quantum

gravity (see (Marolf, 2000) and references therein). In the case of rotational sym-
metry for example, the coherent group average simply projects onto the spin-zero
subspace. This could annihilate the state, e.g., if the “Universe” contained an odd
number of particles with half odd integer spin. A clear advantage of the “statistical”
group average used here is that it is trace preserving. Thus, every kinematical state
gets mapped to a normalized relational state by this procedure. Moreover, carrying
the group average at the level of B(H) rather than H may eliminate some mathe-
matical complications that arise when the symmetry group only admits projective
representations, i.e., when the left and right invariant Haar measure differ.
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The map ES1S2... constructed from tensor products of irreducible representa-
tions of the symmetry group induces a partition of the total Hilbert space

H =
⊗

j

HSj =
⊕

J

HJ ⊗ KJ (21)

where J is a label for the different unitary irreducible representations of G, HJ is
the sector on which the J th representation acts, and KJ is the space associated to
the degeneracy of the J th representation. By virtue of Schur’s lemma, the effect
of the map ES1S2... can easily be described in terms of this decomposition:

ES1S2...(ρ) =
∑

J

11HJ

mJ

⊗ T rHJ
{PJ ρPJ } (22)

for all ρ ∈ B(H). The projectors PJ are defined by PJH = HJ ⊗ KJ , 1lHJ

is the identity operator on HJ , and mJ = dim(HJ ). The operation T rHJ
:

B(HJ ⊗ KJ ) → B(KJ ) denotes the partial trace. In words, this map first im-
poses a superselection rule forbidding coherent superpositions across different J

sectors. Then, within each superselected sector, it completely randomizes the state
over the HJ sector.

At this stage, the analogy with noiseless subsystems is clear. Losing an exter-
nal reference frame induces some kind of “noise” into our physical description. We
can think of each sectors KJ as virtual subsystems that are immune to this noise.
Obviously, these sectors must encode only relational information—information
that is independent of any external reference frame. On the other hand, the sec-
tors HJ contain no information whatsoever about the physical system as they are
always in a maximally mixed state in the absence of a reference frame. Thus, we
can drop these “noisy” sector an simply write ρphysical = ⊕

J pJ ρJ where the pJ

were introduced so that the ρJ ∈ B(KJ ) have unit trace. The interpretation of this
state follows straightforwardly from guideline 4: the system is in one of the states
ρJ with respective probability pJ .

We note that, since each symmetry of the system is associated a conserved
quantity, the superselection induced by the loss of an external reference frame
implies superselection of conserved quantities. Hence, these quantities will al-
ways behave “classically,” as was noted before e.g., in the history formulation of
quantum theory (Hartle et al., 1995).

3.3. Time Symmetry

Time translational symmetry is treated in a completely analogous fashion.
According to guideline 2, the Hamiltonian H has all the symmetries of the system;
in other words, it should be time independent and invariant under the action of G.
A time-dependent quantum state should be thought of as a state given an external
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clock C, and should accordingly be denoted |ψ(t)〉|C . If C and C ′ are two clocks
with associated time coordinate t and t ′, we have |ψ(t ′)〉|C ′ = eiH (t−t ′)|ψ(t)〉|C .
Once again following the Bayesian prescription, the absence of such an external
clock leads to time averaging

ρphysical = T (|ψ〉〈ψ ||C) = 1

T

∫ T

0
e−iH t |ψ〉〈ψ ||CeiHtdt (23)

where dt is the time translational invariant measure satisfying
∫ T

0 dt = T , and T

is the period of the Hamiltonian H . The effect of T will be to impose an energy
superselection rule, so

[ρphysical,H ] = 0. (24)

This may appear awkward since, in a nonrelational framework, this commutator
generates the system’s dynamics. But in a relational theory, the Hamiltonian
naturally leads to a constraint. For example, the Wheeler-DeWitt equation (DeWitt,
1967) H |ψ〉 = 0 is just a special case of (24).

Since H has the system’s symmetries, it commutes with the elements of G.
Hence, the effect of the map T will be to break up each of the sectors KJ imposed
by the geometrical symmetries into further noisy and noiseless sectors. One can
use a more direct route and treat G × U (1) = {g ◦ t : g ∈ G, t ∈ [0, T ]} as the
symmetry group G ′ of the system and apply the noiseless subsystem techniques
directly to the interaction algebra generated by G ′.

The end product of this procedure is a relational quantum state with one
quantum number that is given the interpretation of time and that is classically
correlated with the other quantum numbers. This so called relational time was first
suggested by Page and Wootters (1983). In fact, these authors have described two
distinct mechanisms by which dynamics could arise from a stationary state: either
through quantum or classical correlations between the clock and the other degrees
of freedom. When the state of the entire universe is pure, quantum correlations (or
entanglement) are the only correlations available, so dynamics will unavoidably
be caused by entanglement. This will be the case for example when considering
the Wheeler-DeWitt equation. This type of clock has been investigated by many
(Unruh and Wald, 1989; Pegg, 1991; Gambini and Porto, 2001). However, Eq. (24)
admits mixed state solutions, and we arrived at mixed state description following an
arguably reasonable set of guidelines (particularly from a Bayesian perspective)
and plain quantum mechanics. This might be a hint that time arises through
classical correlations rather than entanglement, and that the Hamiltonian constraint
equation should be imposed at the level of B(H) rather than H. These distinctions
between our construction and what is customarily assumed can be traced back to
the use of a statistical rather than a coherent group average.
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Finally, we note that the observables used to arrive at a non-trivial time evolu-
tion which mimics the orthodox predictions—as in Fig. 1(b)—are not observables
in Dirac’s sense for constraint systems: they do not commute with the Hamiltonian.
This is an unavoidable drawback of the relational time paradigm. In the presence
of interactions, the universe cannot generally be divided into subsystems without
breaking time reparameterization symmetry. In the toy model, time symmetry is
broken when the magnets are traced out of the physical description.

4. DISCUSSION

4.1. Fundamental Decoherence

We see on Fig. 1(b) that the relational theory does not reproduce the orthodox
predictions exactly. In fact, the prediction become worst as the clock time parame-
ter θ increases: curves are closer to the dash curve at θ = 0 than they are at θ = π .
Moreover, these effect decrease as the size of the clock increases, but are always
present for finite clocks. This is due to the fact that time is now a quantum variable,
and as such it is subject to quantum fluctuations. The effect of such a diffuse time
has been investigated as a fundamental decoherence mechanism (Gambini et al.,
2004, 2005; Milburn, 2003; Milburn and Poulin, 2005) taking pure states into
mixed states (Zurek, 2003).

Again, the Bayesian approach helps understanding the origin of this fun-
damental decoherence. In the absence of quantum fluctuation of the clock vari-
able, the state of the systems conditioned on the clock reading t is given by
ρ(t) = e−iH tρ(0)eiHt . However, the reading of a finite dimensional clock yields
a diffuse time value: time is known within a finite accuracy. Thus, given a clock
reading “θ ,” the state of the system should be

ρ(θ ) =
∫

P (t |θ )e−iH tρ(0)eiHtdt (25)

where P (t |θ ) represents our a posteriori probability distribution over the value
of t given our knowledge of θ . The decoherence rate will be directly related to
the width of this distribution (Milburn, 2003; Milburn and Poulin, 2005), which
in turn is a function of the clock’s size. Determining optimal tradeoff between
clock-size and decoherence rate in a relational theory is obviously an interesting
question and we leave it for future investigation. Moreover, the finite-size effect
of the other systems G, M, and N—which we have assumed to be infinite in
our numerical analysis—will add on to this disagreement between orthodox and
relational predictions. For example, Eq. (5) leads to slightly modified probability
rule when the gyroscope is of finite size.

It is interesting to note that this effect introduces an arrow of time: even though
the relational theory is time-symmetric (or more precisely time-independent), it
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yields predictions that are not symmetric with respect to the clock time, as is
clearly illustrated on Fig. 1(b). This suggests that the arrow of time could emerge
from the finite size of our clocks, and that this could be verified experimentally.
Recall however that our setting only allows us to measure the clock’s spin along a
single axis, and as a consequence we cannot distinguish the time range θ ∈ [0, π ]
from θ ∈ [π, 2π ]. Being able to distinguish the time range θ ∈ [π, 2π ], e.g., by
introducing a second gyroscope aligned along the y axis, we would observe a
“recoherence” phase during the second half of the universe’s period. Indeed, this
follows from the periodic boundary conditions: the amplitude of the oscillation at
time θ = 2π is equal to the amplitude at time θ = 0. Such recoherence can only
occur if ∂ρSG/∂θ—the derivative of the system’s state with respect to the clock
time θ—is nonlocal in time; if the equation of motion has a memory term. In a
Markovian approximation where we neglect the memory term, the recoherence
phase will disappear, leading to an effective arrow of time. A detailed study of this
effect is left to future investigation.

4.2. Spin Networks

We will now revisit our toy model and introduce a diagrammatic repre-
sentation for every step that went into our calculations. The five quantum sys-
tems S, M, C, N and G are each assigned a angular momentum operator
�JS , �JM, �J C, �JN , and �JG respectively. The first step to solve the nonrela-

tional dynamical equations was to express the state of S and M in terms of
their total angular momentum operator, and similarly for the the pair C − N .
Thus, we define two new operators �J1 and �J2 satisfying �JS + �JM + �J1 = 0 and
�J C + �JN − �J2 = 0 (the signs might appear arbitrary but are necessary). We can

represent this graphically as follows:

and similarly for the − �J C , − �JN , �J2 triplet.
In the next step, we combined the angular momentum of the gyroscope

to �J2 in order to “read the time.” This defines a new operator �J3 satisfying the
relation �JG + �J2 + �J3 = 0, or in other words �J3 = −( �J C + �JN + �JG). Finally, to
measure the system’s state relative to the gyroscope and clock, we have defined yet
another operator �Jtotal satisfying the relation �J1 + �J3 + �Jtotal = 0, or equivalently
�Jtotal = �JS + �JM + �J C + �JN + �JG . Combining all these steps together yields

the graph
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At this stage, we get rid of the directional reference frame by performing a
group average over the symmetry group SO(3) and eliminate the nonrelational
(or noisy) degrees of freedom. In the diagrammatic representation, this essentially
boils down to removing the arrows from the operators! Hence, we are going to
replace each operator by its j value, i.e., perform the substitution �J → j such that
�J 2 = j (j + 1). However, not all edges of the graph have a fixed value of j , so

we will need to introduce superpositions of the graph with different values of j .
The j values associated to the five systems were fixed from the onset. The j value
associated to the �Jtotal needs not to take a definite value, but it is superselected due
to the groupe averaging procedure, and as so, it can only be in classical statistical
mixtures of different j values. The graph we obtain is therefore

where we have introduced the “[ ]” notation as a shorthand for a convex
combination of the projectors associated to the states inside the brackets, i.e.,∑

a pa[|�a〉] = ∑
a pa|�a〉〈�a|. The various coefficients αj1j2j3 and pjtot can all be

worked out from the initial conditions of all five systems in the nonrelational the-
ory |�(0)〉SMCNG = ∑

smcng βsmcng|S, s; M,n; C, c; N, n; G, g〉. The coefficients
αj1j2j3 and P (jtotal) appearing in (28) will be respectively linear and quadratic
combinations of the βsmcng with appropriate Clebsch–Gordan coefficients.

The last step of our construction is to apply the time averaging map T ,
which leads to energy superselection. The total Hamiltonian can be expressed in
terms of the j values of the graph H = λ[j1(j1 + 1) + j2(j2 + 1) − S(S + 1) −
M(M + 1) − C(C + 1) − N (N + 1)]. Since S, M, C, and N are fixed constants,
the independence of the theory on an external clock implies superselection of
j1(j1 + 1) + j2(j2 + 1), which can be imposed by adding a Kronecker delta in
(28). Hence, we obtain the purely relational background independent state
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The decorated graphs �—called spin networks (Penrose, 1971; Rovelli and
Smolin, 1995; Baez, 1995; Major, 1999)—corresponds to basis states |�〉 for the
relational theory’s Hilbert space Hrel. In our model, the free edges must have a
fixed j value, or a statistical mixture of such values, while the interior edges can
be in quantum superpositions. A vertex with incoming edges labeled j1, j2, and j3

is associated an intertwining operator, that is a map C
2j1+1 ⊗ C

2j2+1 ⊗ C
2j3+1 →

C. In the case of trivalent graphs, this map simply gives the Clebsch–Gordan
coefficients needed to go from (27) to (28). The map T is a “sum over histories”
of the graphs, e.g., T (ρ) = ∫

U (t)ρU (t)†dt . In the loop approach to quantum
gravity, this sum is performed using spin foams (see e.g., Baez, 2000) which are
analog to Feynman diagrams used in quantum electrodynamics. However, the sum
over histories is here carried at the level of B(Hrel), not on Hrel as it is usually the
case; it is not a coherent sum. Again, this is a consequence of the Hamiltonian
constraint [ρ,H ] = 0 that naturally arises in our theory and differs from the usual
equation H |ψ〉 = 0.

The fact that spin networks can serve as basis states in our relational model
is not very surprising since they can be used to describe gauge independent
observables in Yang-Mills theories, e.g., generalized Wilson loop operators (Kogut
and Susskind, 1975; Baez, 1996). Nevertheless, we believe that there is a lot to be
learned about the low energy limit of spin foams models of quantum gravity from
this simple analogy. In the absence of experimental guidance, connections with
well-established physical regimes of the theory can be a quite useful. Spin networks
are likely to play an important role in quantum gravity, but their low energy limit
is poorly understood. Deriving them from textbook quantum mechanics combined
with arguably reasonable guidelines can thus yield interesting insights. One could
of course attempt to repeat the construction with a different (and undoubtedly more
interesting) symmetry group with the help of the studies pursued in the context of
spin networks (see e.g., Freidel and Livine, 2003), but this is beyond the scope of
this paper.

On the other hand, our construction also shows how the tools developed in
quantum gravity can be useful in quantum information science. In particular, we
can consider the group G generated by the interaction algebra A of a collective
TPCP map E . Then, we can construct spin networks decorated by irreducible
representation of G, just like we did here for the group SU (2). The state space of
the noiseless subsystems will thus correspond to the inter-twiner space of the spin
network (Girelli and Livine, 2005).

4.3. Generalizations and Connections

The basic idea exploited in the present paper is to eliminate nonrelational
degrees of freedom by performing averages over the symmetry group of the system.
This technique is well justified from a Bayesian point of view and relies on the
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tools of quantum information science. The idea extends well beyond the example
presented here: it provides a general framework for the study of constrained
quantum systems. Following a similar line of thoughts, Aharonov and Susskind
(1967) have demonstrated how constraints arising from superselection rules can
be effectively circumvented in the presence of a quantum reference system. In the
context of charge superselection rule, their construction leads to the possibility
of observing interference between states of different charges. The question of a
quantum reference of phase has also been debated in the laser (Mølmer, 1997), the
Bose-Einstein condensate (Leggett, 2000), and the superconductor (Kershaw and
Woo, 1974) communities. In all these cases, the emerging (not yet unanimous)
consensus is that the existence or non-existence of a phase depends on whether
the reference system is treated classically or quantum mechanically (Bartlett,
Rudolph, and Spekkens, 2004). As we have shown here, these two descriptions
are equivalent in appropriate regimes.

Our method can also be used to argue that spontaneous symmetry breaking—
an important concept in condensed matter and high-energy physics related to
the existence of Goldstone bosons (Goldstone, Salam, and Weinberg, 1962)—
is not a fundamental phenomenon. Goldstone modes can be observed without
symmetry breaking in the presence of a proper system of reference. For example,
the ground state of a Heisenberg ferromagnet can single out a polarization relative
to a system of reference while leaving the global state of the ferromagnet and
reference system rotationally invariant. Thus, while symmetry-broken states are
useful to describe thermodynamic systems, an equivalent description exists that
preserves all symmetries of nature.

As mentioned at the end of the last section, the next logical step is to ap-
ply the technique to more interesting symmetry groups. This program should be
tractable for the Lorentz group of a free field (Toller, 1997; Mazzucchi, 2000) since
quantum field theory is already ideally set up for this purpose, with the different
particles corresponding to different irreducible representations of the symmetry
group. The noncompactness of the Lorentz group certainly create extra mathe-
matical complications, but can nonetheless be handled in principle (Freidel and
Livine, 2003). A system of harmonic oscillators also has a noncompact symmetry
group, yet our program applies almost straightforwardly to this case (Milburn
and Poulin, 2005). For an interacting field however, the group average becomes
very difficult to perform; one can instead try to formulate the theory directly
in terms of invariant observables (as in algebraic quantum field theory Haag,
1992).

One should also attempt to extend the program to local symmetries, i.e.,
gauge groups. A lattice Abelian gauge theory would be a good place to start.
In this context, gauge fixing is equivalent to introducing a nonphysical “refer-
ence frame” for the gauge field. Hence, our construction would eliminate the
gauge degree of freedom, and the emerging relational quantum theory should not
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contain any gauge field; it should be expressed entirely in terms of Wilson loop
like observables—hence with spin networks (Kogut and Susskind, 1975; Baez,
1996).

5. CONCLUSION

In this paper, we have argued that when described at a fundamental level, i.e.,
in the absence of semiclassical approximations, quantum theory is naturally rela-
tional. Quantum states are independent of any external reference frame or clock,
but only describe relations between physical systems. A nonrelational description
can be recovered as a semiclassical approximation of the relational theory. We
have illustrated this thesis with the help of a collection of particles with spin—
which we use to model a clock, a gyroscope, magnets, etc.,—and discussed how
the idea carries over to general quantum systems. Our construction was moti-
vated by a Bayesian approach to quantum mechanics and borrowed tools from
quantum information science. Using elementary quantum mechanics, we have
re-derived some well-known concepts. By treating time as a quantum mechanical
system—a clock—we were naturally lead to the notion of relational time of Page
and Wootters (1983). Quantum fluctuations of the clock variable predicts a funda-
mental decoherence mechanism, recently discussed by Gambini, Porto, and Pullin
(2004), and clearly seen in our numerical analysis. As a consequence, an effective
arrow of time emerges from a time-independent theory. Finally, basis states for the
relational theory can be described in terms of spin-network introduced by Penrose
(1971) and extensively studied in loop quantum gravity (Baez, 1995; Rovelli and
Smolin, 1995).

However, these concepts emerged from our construction in a slightly different
way than they usually do, and this might lead to interesting physical insights. The
most important distinction concerns the Hamiltonian constraint: we found that
physical states must commute with the Hamiltonian, while it is usually assumed
that physical states must be annihilated by the Hamiltonian. This distinction is
very important, specially when considering mixed states solution that are naturally
expected in a Bayesian approach. As a consequence, we found that relational time
rises from classical correlations between the clock and system of interest, not
entanglement as it is usually assumed. This distinction also suggests that the sum
over histories associated to the Hamiltonian constraint—implemented with spin
foams in loop quantum gravity—should be carried at the level of operators rather
that vectors of the Hilbert space. It is an open question whether this statistical
group average can be consistently and formally incorporated into a generally
covariant theory, and if so, whether it leads to physical predictions that differ
from those obtained through coherent group average. Since quantum gravity is
difficult to probe experimentally, deriving some of its concepts from familiar and



Toy Model for a Relational Formulation of Quantum Theory 1253

overwhelmingly tested regimes of quantum theory as we did in this paper may
offer valuable physical guidance.

Finally, our study illustrates the usefulness of quantum information science—
and particularly the Bayesian view—in quantum gravity, Wheeler’s “it from bit”
(Wheeler, 1991); a point of view that has been gaining popularity lately, e.g.
(Girelli and Livine, 2005; Lloyd, 2005). Conversely, we have also exposed how
the tools developed in a background independent theory such as loop quantum
gravity have direct applications in quantum information: e.g., by demonstrating
that the intertwiners form a basis for the noiseless subsystem of a collective noise
operation, all the mathematical baggage of spin networks carries over to the study
of noiseless subsystems.
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